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Abstract.—The Lowest Radial Distance (LoRaD) method is a modification of the recently introduced Partition-Weighted 
Kernel method for estimating the marginal likelihood of a model, a quantity important for Bayesian model selection. 
For analyses involving a fixed tree topology, LoRaD improves upon the Steppingstone or Thermodynamic Integration 
(Path Sampling) approaches now in common use in phylogenetics because it requires sampling only from the posterior 
distribution, avoiding the need to sample from a series of ad hoc power posterior distributions, and yet is more accurate 
than other fast methods such as the Generalized Harmonic Mean (GHM) method. We show that the method performs 
well in comparison to the Generalized Steppingstone method on an empirical fixed-topology example from molecular 
phylogenetics involving 180 parameters. The LoRaD method can also be used to obtain the marginal likelihood in 
the variable-topology case if at least one tree topology occurs with sufficient frequency in the posterior sample to 
allow accurate estimation of the marginal likelihood conditional on that topology. [Bayesian; marginal likelihood; 
phylogenetics.]

The marginal likelihood is a quantity of central impor-
tance to Bayesian model selection and hypothesis test-
ing. Defined as the weighted average fit of a model to 
the data, with weights determined by the prior distribu-
tion and fit determined by the likelihood, the marginal 
likelihood rewards models that fit the data well over 
the parameter space considered important according 
to the joint prior distribution, and implicitly punishes 
models with gratuitous complexity (i.e. models with 
parameters that do not allow for a substantial increase 
in the likelihood). The Bayes factor used to compare the 
fit of one model relative to a single alternative model 
is a simple ratio of marginal likelihoods. Bayes factors 
represent a Bayesian alternative to Frequentist model 
selection criteria such as likelihood ratio tests and AIC/
BIC comparisons. As with AIC and BIC, the marginal 
likelihood may be used to rank models that are not 
necessarily nested; however, unlike AIC and BIC, the 
complexity penalty imposed by the marginal likeli-
hood depends on the prior and therefore differs among 
model parameters.

We present here a new method (LoRaD) that com-
petes favorably with the Thermodynamic Integration 
(TI; Lartillot and Philippe 2006; Friel and Pettitt 2008) 
(also known as Path Sampling) and Steppingstone (SS; 
Fan et al. 2011; Xie et al. 2011; Baele et al. 2015) meth-
ods in accuracy for the fixed tree topology case and 
which can be computed from a sample of points from 
(only) the posterior distribution. Both TI and SS require 
sampling from numerous power posterior distribu-
tions, which entail considerable extra computational 
effort (beyond that involved with sampling from the 

posterior distribution). The samples from these power 
posterior distributions are normally only used to esti-
mate the marginal likelihood and not to estimate the 
parameters of the model. An exception is MIGRATE-N, 
which uses power posteriors for both Metropolis cou-
pling to improve mixing as well as to estimate the 
marginal likelihood (Beerli and Palczewski 2010). 
Given that sampling from the posterior distribution is 
required in order to estimate model parameters, LoRaD 
is both faster (“haste”) and all samples can be used for 
both parameter estimation and model assessment (“no 
waste”).

Interestingly, the LoRaD method is able to accu-
rately estimate the marginal likelihood using only 
a subset of points from the posterior sample. This 
allows, in some cases, the marginal likelihood of a 
phylogenetic model in which tree topology is vari-
able to be estimated accurately from only samples 
involving the most frequently sampled tree topol-
ogy. LoRaD does not require computation of the 
likelihood and joint prior for any additional points 
but does require log transformation of parameters 
and standardization, which involves computing 
the inverse of the p× p variance–covariance matrix, 
where p is the model dimension (i.e. number of esti-
mated parameters, including edge lengths). Given its 
importance in Bayesian model selection and the fact 
that the marginal likelihood may only be approxi-
mated numerically in most real-world situations, it 
is not surprising that many different methods have 
been proposed for estimating this central quan-
tity (Chib 1995; Meng and Wong 1996; Lartillot and 
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Philippe 2006; Friel and Pettitt 2008; Fan et al. 2011; 
Xie et al. 2011; Arima and Tardella 2012; Wang et al. 
2018). The marginal likelihood is the normalizing 
constant that converts a posterior kernel—the prod-
uct of likelihood and prior probability density—into 
a posterior probability density, and, ideally, would 
be estimated from parameter vectors sampled from 
the posterior distribution. This goal has proved elu-
sive, with early attempts (HM; Newton and Raftery 
1994) yielding strongly biased estimates. This led to 
the development of more accurate methods such as 
TI and SS.

Fourment et al. (2020) provided a side-by-side com-
parison of 19 marginal likelihood methods for a simple 
phylogenetic example (Jukes-Cantor model without 
rate heterogeneity on a fixed tree topology), finding 
that the Generalized Steppingstone (GSS) method is 
arguably the most consistently accurate but also the 
most computationally intensive of all methods tested. 
Fourment et al. (2020) also introduced several new 
methods, such as their Laplus family, that appear to 
be both extremely fast (i.e. computationally efficient) 
as well as accurate (boasting accuracy levels rivaling 
GSS); however, these methods make several assump-
tions (e.g. independence of edge length parameters) 
that reduce their generality, and the methods were 
tested on models involving only edge length parame-
ters. Finally, Arima and Tardella (2012) introduced the 
Generalized Harmonic Mean (GHM) method and com-
pared it to both the Inflated Density Ratio (IDR) and 
GSS methods. The GHM and IDR methods are of par-
ticular interest because they, like the LoRaD method 
introduced here, require only samples from the pos-
terior distribution and do not require any additional 
likelihood evaluations.

The LoRaD method is a special case of the PWK 
(Partition-Weighted Kernel) method (Wang et al. 2018). 
PWK has been formally described elsewhere, but 
in this paper, we 1) introduce a new LoRaD (Lowest 
Radial Distance) approach to defining the working 
parameter space used by PWK, 2) illustrate the method 
graphically for a simple 2-parameter example, and 3) 
show that our method can accurately estimate the mar-
ginal likelihood in two empirical phylogenetic exam-
ples. LoRaD improves on the SS, GSS, and TI methods 
by allowing the marginal likelihood to be estimated 
accurately with no further likelihood evaluations other 
than those needed to generate a posterior sample. It 
improves on the GHM and IDR methods by requiring 
only a fraction of the points sampled from the poste-
rior distribution, which allows (e.g.) the variable-topol-
ogy marginal likelihood to be estimated using samples 
from only one focal topology, assuming that the focal 
topology has a marginal posterior probability large 
enough to be accurately estimated. Another advantage 
is that LoRaD does not require any change to existing 
phylogenetic software as long as the log likelihood, 
log prior, and all parameter values are recorded for the 
points sampled.

materials and methods

Notation

Let the posterior probability density for parame-
ter vector θ be denoted byp(θ) = q(θ)/c, where q(θ) is 
the posterior kernel (the prior density multiplied by 
the likelihood; i.e. the numerator in Bayes’ rule) and 
c = p(y) is the marginal likelihood of interest. The 
quantities p(θ) and q(θ) are both conditioned on data y,  
but our notation omits this conditioning for simplicity. 
Likewise, c is a function of y, even though this is not 
explicit in the notation. The posterior density is sim-
ply a scaled version of the posterior kernel. The scaling 
factor needed (i.e. the marginal likelihood c) equals the 
volume under the posterior kernel surface; hence, mar-
ginal likelihood estimation is equivalent to performing 
numerical integration to determine the volume under 
the posterior kernel surface.

Training Sample vs. Estimation Sample

The total sample (comprising T  sampled parameter 
vectors) is first partitioned into two disjoint subsets, 
the training sample and the estimation sample, based on 
a user-specified training fraction denoted ψ (Fig. 1a). 
The training sample thus has size T0 = ψT and estima-
tion sample has size T1 = (1− ψ)T . The value ψ = 0.5 
works well in practice.

The training sample is used to determine the working 
parameter space (described below), while the estima-
tion sample is used to estimate the marginal likelihood 
given that pre-specified working parameter space defi-
nition. The extent of the working parameter space must 
be determined without reference to the estimation sam-
ple to avoid bias.

The purpose of the transformations described in the 
next two sections is to remove differences in support 
and scale among the model parameters so that the pos-
terior density surface is as close as possible (up to a scal-
ing factor) to a multivariate normal density. The goal is 
to determine the scaling factor (i.e. the marginal likeli-
hood) that makes the unnormalized, log-transformed, 
and standardized posterior coincide as closely as possi-
ble with the multivariate normal reference density.

Log Transformations

Log transformations are performed on parameters that 
are constrained in their support. All T points in both the 
training and estimation samples are log-transformed (Fig. 
1b), as in Arima and Tardella (2012), such that all parame-
ters have support equal to the entire real line (−∞, +∞).

The log transformation used for a strictly-positive 
continuous parameter X  (e.g. edge length, rate ratio) is:

Y = log(X). (1)

A logit transformation may be used for a univariate 
parameter P with support from 0 to 1 (e.g. proportion of 
invariable sites):
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Q = log

Å
P

1− P

ã
. (2)

For a vector U = (U1,U2, · · · ,UM) constrained such 
that 

∑M
m=1Um = 1 (such as base frequencies, in which 

M = 4, or GTR exchangeabilities, in which M = 6), 
a log-ratio transformation may be used (the log-ratio 
transformation is a multivariate extension of the logit 
transformation):

V2 = log

Å
U2

U1

ã
(3)

V3 = log

Å
U3

U1

ã

... (4)

VM = log

Å
UM

U1

ã
.

(5)

Note that the original random variable U has M− 1 
degrees of freedom. The transformation yields variable 
V , also of dimension M− 1, with the M− 1 components 
equal to the logarithm of the ratio of the corresponding 
component of U to an arbitrarily chosen reference ele-
ment (U1 in this case).

The log/logit/log-ratio transformations (hereaf-
ter denoted simply log transformations) require that 
the original posterior kernel (which has presumably 
been made available by the Bayesian software that 
performed the MCMC sampling) be multiplied by the 
appropriate Jacobian terms so that volumes after trans-
formation are equivalent to volumes before transforma-
tion for comparable parameter intervals. The Jacobian 
terms for the log, logit, and log-ratio transformations 
are, respectively:

∣∣∣∣
dX
dY

∣∣∣∣ = eY = X
(6)

∣∣∣∣
dP
dQ

∣∣∣∣ =
eQ

(1+ eQ)2
= P(1− P)

(7)

det

Å
dU
dV

ã
=

eV2+···+VM

(1+ eV2 + · · ·+ eVM)
M = U1U2 · · ·UM.

(8)

Standardization Transformation

The mean vector and covariance matrix of the 
(log-transformed) training sample (Fig. 1c) are used 
to standardize all T  sampled points (Fig. 1d). The p
-dimensional mean vector of the training sample after 
standardization is the zero vector, 0p, and the p× p 
variance–covariance matrix of the log-transformed and 
standardized training sample is equivalent to the iden-
tity matrix Ip. The mean vector and covariance matrix 
of the log-transformed and standardized estimation 
sample will approximately equal, but will not be iden-
tical to, 0p and Ip, respectively, due to stochastic differ-
ences between the training and estimation subsets.

The standardization transformation is

Y = S−0.5(X− X), (9)

where X  is the p× T matrix of log/logit/log-ratio 
transformed parameter values, X is the p× T matrix 
with each column equal to the p-dimensional mean 
vector computed from the training sample, and S is the 
p× p sample variance–covariance matrix computed 
from the training sample. The Jacobian determinant for 
this transformation is det(S0.5).

Figure 1.  Flow chart showing processing of posterior sample to produce the LoRaD marginal likelihood estimate.
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The notation q̃(θ̃) is used hereafter to denote the pos-
terior kernel of a point θ̃  in the log-transformed and 
standardized parameter space.

Working Parameter Space

The PWK method (of which the LoRaD method is a 
special case) begins by defining a p-dimensional work-
ing parameter space, Θ̃, using the training sample. The 
working parameter space Θ̃ is a subset of the p-dimen-
sional full parameter space in which the transformed 
posterior kernel, q̃(θ̃), is bounded away from zero for 
every point θ̃ ∈ Θ̃.

Let ri = ||θ̃i|| be the Euclidean norm (radius) of point 
i (i = 1, · · · ,T0) from the log-transformed and stan-
dardized training sample. Transformations preserve 
volume, so the value c (the marginal likelihood) is not 
affected. Sort the training sample from smallest to larg-
est ri: r(1) ≤ r(2) ≤ · · · ≤ r(T0). Choose the coverage frac-
tion φ such that points with radius greater than r(t) are 
discarded, where t = φT0. Let rmax = ||θ̃(t)|| be the norm 
of the point θ̃(t) representing the radius that defines 
the 100φ% Lowest Radial Distance (LoRaD) region 
(Fig. 1e). The working parameter space Θ̃ is defined as 
{θ̃ : ||θ̃|| ≤ rmax}. Note that the working parameter space 
is not necessarily equivalent to the 100φ% HPD region 
but is expected to be close if the log-transformed, stan-
dardized posterior density is reasonably symmetric.

The LoRaD Method

Let ∆ be the volume under that portion of the p
-dimensional standard normal density z(θ̃) correspond-
ing to the working parameter space Θ̃:

∆ =

ˆ

Θ̃

z(θ̃)dθ̃
(10)

=

ˆ

R p
z(θ̃) 1

θ̃∈Θ̃
dθ̃,

(11)

where 1
θ̃∈Θ̃

 is an indicator function that equals 1 if θ̃  is 
in the working parameter space Θ̃ and 0 otherwise.

The quantity ∆ approximates the integral ´
Θ̃
(q̃(θ̃)/c)dθ̃ . Consider the following modification to 

(11):

∆

c
=

ˆ

R p

z(θ̃) 1
θ̃∈Θ̃

q̃(θ̃)

q̃(θ̃)
c

dθ̃.
(12)

This suggests that we can approximate 1/c using the 
expected value of the quantity z(θ̃) 1

θ̃∈Θ̃
/q̃(θ̃), where the 

expectation is with respect to the posterior distribution:

1
c
=

´
R p

Å
z(θ̃)

q̃(θ̃)
1
θ̃∈Θ̃

ã
q̃(θ̃)
c dθ̃

∆
=

E
θ̃|y

ï
z(θ̃)

q̃(θ̃)
1
θ̃∈Θ̃

ò

∆
. (13)

The LoRaD estimator of c is thus (Fig. 1g)

ĉ =
∆

1
T1

∑T1
t=1

z(θ̃t)

q̃(θ̃t)
1
θ̃t∈Θ̃

,

(14)

where T1 is the size of the estimation sample. The 
denominator of (14) involves a sum of ratios of the mul-
tivariate normal reference density to the unnormalized 
posterior kernel for the filtered estimation sample that 
contains only points within a distance rmax  from the ori-
gin (Fig. 1f).

Computation of ∆

The quantity ∆ represents the cumulative proba-
bility of the p-dimensional standard radial error dis-
tribution (i.e. the distribution of R = || X || when 
X ∼ MVNorm(0p, Ip)). Edmundson (1961) provided the 
cumulative probability of a p-dimensional standard 
radial error distribution,

p(R ≤ rmax) =
γ( p/2, r2max/2)

Γ( p/2)
,

(15)

where γ(s, x) is the lower incomplete gamma function,

γ(s, x) =
ˆ x

0
ts−1e−tdt,

(16)

and Γ(s) is the (complete) gamma function,

Γ(s) =
ˆ ∞

0
ts−1e−tdt.

(17)

Note that Equation (15) lacks the (erroneous) factor 2 
in Equation (4), p. 12, of Edmundson (1961).

Applying Chib’s Method When Topology Varies

If the model involves estimation of tree topology, 
and if one particular tree topology τ  is frequent enough 
that its marginal posterior probability can be accurately 
estimated, then the Chib (1995) method may be used 
to obtain an estimate of the marginal likelihood for 
the variable-topology model given a posterior sample 
filtered to contain only sampled points from the focal 
topology τ . Chib’s method rearranges the Bayes’ rule 
formula to obtain an estimate of the marginal likeli-
hood p(y) given the marginal posterior probability of 
tree topology τ , p(τ | y), the marginal likelihood con-
ditional on τ , p(y | τ), and the prior probability of tree 
topology τ , p(τ):

p(y) =
p(y|τ) p(τ)
p(τ |y)

.
(18)

This presumes that the sample size remaining  
after filtering out sample points with non-focal topolo-
gies is sufficiently large to accurately estimate the term 
p(y | τ).

LoRaD in Practice

Two issues arise in practice when using LoRaD. First, 
how does one choose the coverage fraction φ, which is 
the fraction of the training sample used in determining 
the limits of the working parameter space? Second, how 
does one determine whether the MCMC sample size 
used was sufficient to obtain an accurate estimate of the 
marginal likelihood?
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Overlapping Batch Statistics (OBS) can provide an 
estimate of the Monte Carlo standard error (MCSE) of 
the marginal likelihood estimate, which can be used to 
assess whether the size of the MCMC sample was large 
enough to reliably estimate the marginal likelihood. 
The OBS MCSE is computed as follows:

÷MCSE =

®ï
B

T − B

ò∑T−B+1
b=1 (η̂b − η̄)

2

T − B+ 1

´ 1
2

,
(19)

where η̂b is an estimate of the marginal likelihood in log 
scale using the b th batch (θi, i = b, b+ 1, · · · , b+ B− 1), 
η̂ is the overall mean,

η̄ =
1

T − B+ 1

T−B+1∑
b=1

η̂b
(20)

and the batch size B is suggested to be in the range 
10 ≤ T/B ≤ 20. Ideally, the estimated MCSE should 
be one tenth or less of η̂ = log(ĉ).

RESULTS

An Illustrative Example

The following example is non-phylogenetic, but 
has the advantage that the models involved contain 
at most only two free parameters (i.e. p = 2), which 
allows for a 3-dimensional graphical depiction of the 
posterior kernel surface and the corresponding bivar-
iate normal reference density. Assume that the goal is 
to evaluate which of two models (JC69 or K80) is best 
for estimating the evolutionary distance between two 
DNA sequences. Two sequences of length 200 sites 
were simulated (using the k80lorad.py script in the lorad/
k80example directory of the Supplementary Materials, 
Dryad DOI:doi:10.5061/dryad.pg4f4qrrw) under the 

more-complex K80 substitution model with edge length 
ν = 0.2 and transition/transversion rate ratio κ = 5. Of 
the 200 total sites, 142 (71%) were constant, with the 58 
(29%) variable sites divided into 36 (18%) showing tran-
sition-type substitutions and 22 (11%) showing trans-
version-type substitutions.

In the K80 model (Kimura 1980) (p = 2), the edge 
length parameter, ν , represents the expected number of 
substitutions per site, and the parameter κ is the ratio of 
the instantaneous rate of transition-type substitutions 
(i.e. A ↔ G or C ↔ T) to the instantaneous rate of trans-
version-type substitutions (A ↔ C, A ↔ T , G ↔ C,  
or G ↔ T ). The posterior kernel for this model may be 
visualized as a fin-like surface above a 2-dimensional 
plane defined by axes representing each of the two 
model parameters (Fig. 2a). The joint prior density used 
for this example is the product of a Gamma(1, 50) = 
Exponential(1/50) prior density for ν  and an identical 
Gamma(1, 50) prior density for κ.

An MCMC analysis of this posterior distribution 
of length 1,000,000 iterations, sampling every 100 
iterations, yielded 10,000 sampled points. Estimated 
effective sample sizes were 10213 (ν ) and 10684 (κ), 
indicating good mixing. Posterior means were 0.189 
(ν ) and 4.50 (κ). The marginal posterior variance for 
the κ parameter (2.05) was considerably higher than 
that for the ν  parameter (0.00191), indicating that the 
400 total nucleotides contain considerably more infor-
mation about ν  than κ, which makes sense given that 
information needed for estimating κ lies in sites that 
experienced substitution (29% of sites differed between 
the two sequences), whereas all sites contribute infor-
mation relevant to estimating ν . A plot of the posterior 
kernel surface reflects these differences (Fig. 2a; note the 
one order of magnitude difference in scale for the two 
parameter axes).

Both parameters were log-transformed and standard-
ized using the sample mean and variance–covariance 

Figure 2.  Posterior kernel surfaces for the K80 example: a) untransformed; b) log-transformed and standardized; c) transformed, 
standardized log-posterior surface (heat colors) with the approximating multivariate standard normal density surface (monochrome) 
superimposed.
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matrix of the log-transformed training sample. This 
yielded a nearly symmetric posterior kernel surface on 
the log scale (Fig. 2b). The transformed posterior ker-
nel, if normalized, is closely approximated by a bivar-
iate standard normal density (Fig. 2c). This similarity 
makes the standard normal density an excellent ref-
erence function for the PWK method. The T0 = 5, 000 
log-transformed and standardized training sample 
points were sorted, retaining the fraction φ = 0.1 having 
the lowest radial distance (i.e. the 500 points closest to 
the origin). While the sample mean vector of the train-
ing sample was necessarily equal to the 2-dimensional 
zero vector due to the standardization transformation, 
the mean vector of the estimation sample was slightly 
different (−0.00062, −0.02655) due to the fact that it was 
standardized using the mean and covariance matrix 
from the training sample.

The log marginal likelihood estimated using the 
LoRaD method for this example is −460.82239. For com-
parison, an independent Generalized Steppingstone 
analysis was carried out using 5 ratios (“stones”), 
100,000 iterations/ratio, sampling every 100, and refer-
ence distributions set to the Gamma prior distributions 
parameterized from the marginal posterior means and 
variances. The log marginal likelihood estimated via 
the Steppingstone method was −460.86154.

The JC69 model (Jukes and Cantor 1969) is nested 
within the K80 model because JC69 assumes κ = 1. 
Given that the true value of κ used when simulating the 
data was κ = 5, we expect that the marginal likelihood 
for the JC69 model will be lower than that for the K80 
model because the JC69 model cannot reach the region 
of parameter space in which the K80 model achieves its 
highest likelihoods.

The log marginal likelihood estimated using 
the LoRaD method is −467.33247 (Generalized 
Steppingstone estimate using 5 stones is −467.35384). 
The marginal likelihood for the JC model is indeed 
lower by more than 6 log units than the marginal likeli-
hood for the K80 model.

Example: Fixed Topology

As an empirical phylogenetic example, we revisited 
the 32-taxon cicada dataset used to test the Generalized 
Steppingstone method (Fan et al. 2011). The data are 
from Marshall et al. (2006) (treebase.org study ID 1679). 
We removed the tRNA and the equivalent of a single 
codon (so that the data for no gene contained partial 
codons), leaving four protein-coding genes: COI (774 
sites), COII (702 sites), ATPase8 (462 sites), and ATPase6 
(149 sites). We partitioned the data four ways: unparti-
tioned (all 2087 sites concatenated); by gene (partitioned 
at gene boundaries); by codon (the partition comprised 
three subsets corresponding to the first, second, and 
third codon positions from all four genes); and by 
both (partitioned by gene and codon yielding 12 sub-
sets). For every partitioning scheme, a separate GTR+G 
model was applied to each subset (with state frequen-
cies, GTR exchangeabilities, and rate variance unlinked 

across subsets). Parameters that were linked across all 
subsets included the tree length and edge length pro-
portions. The tree topology was fixed for all marginal 
likelihood analyses to the maximum likelihood tree 
obtained using PAUP* v. 4a166 (Swofford 2003) for the 
unpartitioned data using a GTR+G model.

Priors used were as follows:

State frequencies        Dirichlet(1, 1, 1, 1)
GTR exchangeabilities    Dirichlet(1, 1, 1, 1, 1, 1)
Rate variance            Gamma(1, 1)
Edge proportions         Dirichlet(1, 1, · · · , 1)
Tree length              Gamma(1, 10)
Subset relative rates      Dirichlet(1, 1, · · · , 1)

The number of Dirichlet parameters for the subset 
relative rate prior varied depending on the partition 
model (3 if partitioning by codon, 4 if by gene, and 12 if 
by both gene and codon).

MCMC analyses and estimation of the marginal 
likelihood for each partitioning scheme were car-
ried out by software available in directory lorad of the 
Supplementary Materials.

MCMC analyses were run for 10,000,000 itera-
tions following a burn-in of length 100,000 iterations. 
The burn-in iterations were used to tune Metropolis-
Hastings proposals that were then fixed for the sam-
pling iterations. The single chain was sampled every 
100 iterations, yielding a sample size of 100,000 from 
the posterior distribution. For each of the four partition 
models, the MCSE was estimated for 11 coverage frac-
tion (φ) values (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 
and 0.99) for the first replicate, and the value of φ asso-
ciated with the smallest MCSE was used to estimate the 
marginal likelihood using the LoRaD method for all 20 
replicates. The φ values used were: 0.1 (unpartitioned), 
0.2 (partitioned by codon), 0.8 (partitioned by gene), 
and 0.6 (partitioned by both gene and codon).

Marginal likelihoods for each partitioning 
scheme were also estimated using the Generalized 
Steppingstone (GSS) method (Fan et al. 2011). The 
GSS analyses involved 20 steppingstones, where each 
steppingstone is one ratio of normalizing constants 
estimated using a sample of size 10,000 (1,000,000 
iterations saving every 100 following a burn-in of 
10,000 iterations) from a single power posterior dis-
tribution. The 20 β values representing powers for 
the power posterior distributions were evenly spaced 
(i.e. β ∈ {0.00, 0.05, 0.10, 0.15, · · · , 0.95}). The reference 
distribution was equivalent to the prior with first and 
second moments of each component matching the 
marginal posterior for that component in the posterior 
sample used for LoRaD. Thus, for this set of analyses, 
GSS was able to take advantage of the computational 
effort expended already to obtain the LoRaD estimate 
in determining its reference distribution.

Finally, the marginal likelihood was estimated using 
the Generalized Harmonic Mean (GHM) method (Arima 
and Tardella 2012). GHM, like LoRaD, requires a sample 
of points from only the posterior distribution, and thus 
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comparison with GHM is important to see whether the 
additional transformation and standardization steps 
used in LoRaD improve accuracy over the much simpler 
GHM approach. We did not compare LoRaD to the IDR 
method because Arima and Tardella (2012) found that 
GHM was as good or better than IDR in practice.

LoRaD produced estimates that were, on average, 
slightly lower than GSS, but the marginal likelihoods 
estimated from the LoRaD and Steppingstone methods 
differed by less than 0.03% for all partitioning schemes 
(Table 1 and Fig. 3). Despite using half the computa-
tional effort of GSS, LoRaD estimates are more pre-
cise than GSS as judged by the standard deviation 
of log marginal likelihood estimates across MCMC 
replicates. GHM produced estimates that were con-
siderably higher than either LoRaD or GSS for all par-
titioning schemes, and GHM was more variable than 
either of the other two methods across replicate MCMC 
analyses.

Computational Efficiency of LoRaD vs. GSS

Using the best partition model (“by codon”) from the 
cicada example, we explored the performance of GSS 

vs. LoRaD for varying MCMC run lengths to examine 
which method accurately estimates the marginal likeli-
hood with the fewest MCMC iterations. The number of 
burn-in iterations for each point was 10% of the number 
of sampling iterations. For GSS, the number of sampling 
iterations was divided by 20, with a fraction 1/20 going 
toward estimating the reference distribution and 19/20 
spent on sampling 19 different ratios (i.e. 19 “stepping-
stones”). The LoRaD method does not require sampling 
from power posteriors, so all sampling involved the pos-
terior distribution. For LoRaD, both training fraction and 
coverage were 0.5 (except where noted below). In both 
GSS and LoRaD, only every 10th iteration was sampled.

It is clear that LoRaD outperforms GSS for this exam-
ple if the number of MCMC iterations is less than 
500,000 (5.7 on log10 scale) (Fig. 4). Both LoRaD and GSS 
struggled for 20,000 and 50,000 iterations (4.3 and 4.7, 
respectively, on log10 scale). For these two run lengths, 
GSS estimates deviated from the true value substan-
tially, and LoRaD could not be computed without 
increasing the training fraction to 0.8 and the coverage 
to 0.99 because no points from the estimation sample 
fell within the working parameter space defined by the 
training sample.

Example: Variable Topology

Holder et al. (2014) described a new reference distri-
bution for tree topologies that improved the efficiency 
of Generalized Steppingstone for variable-topology 
Bayesian analyses. While it is not possible to know the 
true marginal likelihood, they came as close as possible 
by using GSS to estimate the fixed-topology marginal 
likelihood for all 105 tree topologies for data compris-
ing 5 taxa from the green algal genus Protosiphon and a 
Chlamypodium vacuolatum outgroup and 1376 sites from 
the protein-coding chloroplast gene rbcL (Lewis and 
Trainor 2012). The total marginal likelihood can be esti-
mated using these 105 conditional marginal likelihoods 
as follows:

p(y) =
105∑
i=1

p(y|τi) p(τi)
(21)

=
1
105

105∑
i=1

p(y|τi),
(22)

Table 1.  Comparison of steppingstone (SS), LoRaD, and GHM for four different partition schemes for the cicada data. 

Partition scheme p GSS LoRaD GHM 

Unpartitioned 70 −10334.96 −10335.85 −10333.09
(0.62) (0.06) (0.35)

By codon 90 −9826.69 −9827.86 −9823.55
(0.82) (0.18) (0.68)
(0.52) (0.08) (1.69)

By gene and codon 180 −9884.76 −9887.36 −9873.84
(0.73) (0.51) (1.26)

Note: Values in parentheses represent the standard deviation of the log marginal likelihood across 20 replicates.
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Figure 3.  Scatter plot of 20 replicate Generalized Steppingstone 
(GSS; circles) and 20 replicate LoRaD (triangles) log marginal 
likelihoods for each of four different partition schemes for the cicada 
data.
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where τi is the i th distinct tree topology of 105 total. 
The second line follows from the fact that a discrete uni-
form prior was assumed for the 105 possible unrooted 
topologies for 6 taxa. Holder et al. (2014) compared this 
“brute force” estimate with the GSS estimate (from a 
single variable-topology analysis using the new topol-
ogy reference distribution) for 24 models. We estimated 
the total marginal likelihood using the LoRaD method 
described here for a subset of 16 of these models and 
compared the result with the brute force marginal like-
lihoods reported by Holder et al. (2014) (Table 2). First, 
an MCMC analysis was performed in which topology 
was allowed to vary. Second, the resulting posterior 
sample was filtered so that only sample points associ-
ated with the focal tree topology (i.e. the maximum a 
posteriori, or MAP, tree topology) were retained. Third, 
LoRaD was used to estimate the marginal likelihood 
conditional on the focal tree topology, and the Chib 
method described here was used to estimate the total 
marginal likelihood using the sampled frequency as 
the estimate of the marginal posterior probability of the 
focal tree.

These analyses differed in some details from those 
used for the cicada data in order to match the marginal 
likelihoods reported by Holder et al. (2014). For exam-
ple, an Exponential(10) prior (mean 0.1) was placed on 
each individual edge length rather than the Gamma-
Dirichlet (Rannala et al. 2011; Zhang et al. 2012) prior 
used for the cicada dataset. Also, rate heterogeneity 
for the Protosiphon analyses was parameterized using 
the shape parameter from the discrete Gamma among-
site rate heterogeneity model; for the cicada data, the 
parameter used was the rate variance (inverse of the 
shape parameter).

The following table lists the priors used for the anal-
yses reported in Table 2.

Tree topology            Discrete Uniform (1, 105)
State frequencies         Dirichlet (1, 1, 1, 1)
GTR exchangeabilities     Dirichlet (1, 1, 1, 1, 1, 1)
Gamma shape           Gamma(1, 1)
Edge length             Exponential(10)
Subset relative rates       Dirichlet(1, 1, 1)

A 6-taxon unrooted tree has 9 edge length parame-
ters. Edge lengths and tree topology were linked across 
subsets for partitioned analyses; all other parameters 
were unlinked across partition subsets. For example, 
the codon-partitioned GTR+I+G model has 41 free (esti-
mated) substitution model parameters (not including 
tree topology): 9 edge lengths, 2 subset relative rates, 3 
sets of 5 exchangeabilities, 3 sets of 3 state frequencies, 
3 gamma shapes, and 3 proportion of invariable sites 
parameters.

All MCMC analyses, regardless of the number of 
parameters, involved a 10,000 iteration burn-in period 
in which proposals were tuned followed by 30,000,000 
iterations, sampling every 1000, to yield 30,000 sampled 
parameter values. Approximately 70% of these 30,000 
samples involved the focal topology. The LoRaD and 
brute force GSS estimates differ by less than 0.03% 
even for the most complex model tested (partitioned 
GTR+I+G model).

Discussion

Marginal likelihood estimation has become increas-
ingly important in systematics studies in the past decade 
as methods have improved and software implementing 
these methods and promoting their use in manuals 
and tutorials has become more widely available. One 
feature of state-of-the-art methods for marginal likeli-
hood estimation such as Path Sampling (Lartillot and 
Philippe 2006) and Steppingstone (Fan et al. 2011; Xie 
et al. 2011) is the requirement for sampling from mul-
tiple power posterior distributions, which involve, like 
the posterior distribution, the product of the likelihood 
and joint prior but differ in being intermediate between 
the posterior and a reference distribution, which equals 
the joint prior in the case of Steppingstone (Xie et al. 
2011). For both the Steppingstone and Generalized 
Steppingstone (Fan et al. 2011) methods, the posterior 
distribution is not sampled at all, which means that the 
computational effort expended in estimating the mar-
ginal likelihood cannot be used for estimating model 
parameters or marginal probabilities of clades or entire 
tree topologies.

The LoRaD method proposed here provides an accu-
rate means of estimating the marginal likelihood that 
requires only a sample from the posterior distribution. 
Thus, no computation is wasted because the same sam-
ple used to estimate model parameters may also be used 
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Figure 4.  Plot showing estimated log marginal likelihood as a 
function of log10 (number of sampling iterations) for LoRaD (solid line 
with circular points) and GSS (dotted line with square points). The 
thin dotted horizontal line is at −9827.
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to estimate the marginal likelihood. While other accurate 
methods (e.g. bridge sampling; Meng and Wong (1996)) 
operate on a single posterior sample, these methods all 
require additional likelihood calculations above and 
beyond those used to obtain the sample. The LoRaD 
method does require some computation, but avoids the 
need to make additional expensive phylogenetic like-
lihood evaluations, thus obviating the need for modi-
fications to existing Bayesian phylogenetic software. 
Finally, considerable computational effort is saved by 
sampling from just one distribution, not a series of dis-
tributions along a path from posterior to prior.

As appealing as this seems, there are some caveats 
associated with the LoRaD method. Because a multi-
variate standard normal distribution is used as the ref-
erence, the posterior sample must be log-transformed 
and standardized so that it is approximately standard 
normal. This means that LoRaD is not expected to work 
well with multimodal posterior distributions. The stan-
dardization involves estimating and inverting a poten-
tially large p× p variance–covariance matrix, where p 
is the total number of model parameters. It also may be 
the case that a larger sample is needed from the poste-
rior than would ordinarily be used in order to achieve 
the desired accuracy, although the computational effort 
expended in obtaining that larger sample improves all 
inferences and is not effort wasted.

An important caveat for the LoRaD method is that 
a reasonably large posterior sample is needed from a 
single tree topology. If MCMC analyses involve fixed 
tree topology, then this is not a problem, but estimating 
the tree topology itself is the focus in many Bayesian 
phylogenetic analyses and those analyses thus allow 
tree topology to vary from one iteration to the next. In 
such cases, LoRaD is most useful if one tree topology is 
well represented in the posterior sample. That is, one 
topology τ  has marginal posterior probability high 
enough that it provides a sample of sufficient size to 

estimate p (y | τ) using LoRaD. If, for example, nearly 
every sampled tree from the posterior involves a dis-
tinct topology, then clearly LoRaD will not be able to 
provide an accurate estimate of the unconditional mar-
ginal likelihood p (y) because both p (y | τ) and p (τ | y) 
in Chib’s identity, Equation (18), are poorly estimated. 
In such cases, more computationally expensive meth-
ods (Lartillot and Philippe 2006; Fan et al. 2011; Xie 
et al. 2011) will be required. Estimation of the Monte 
Carlo Standard Error (MCSE) can be used to determine 
whether the number of samples obtained for the most 
frequently sampled topology τ  is sufficient for estimat-
ing p (y | τ).

In summary, LoRaD provides a way to get accurate 
marginal likelihood estimates efficiently in Bayesian 
phylogenetics when either tree topology is fixed or one 
tree topology occurs at a frequency high enough in the 
posterior sample to estimate the marginal likelihood 
conditional on that topology. Unlike other fast methods, 
LoRaD is unbiased and assumes only that the posterior 
is unimodal. A further advantage is that LoRaD does not 
require existing Bayesian software to be modified as long 
as both the log joint prior and log-likelihood are provided 
in the output alongside sampled parameter values.
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Data available from the Dryad Digital Repository: 
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Table 2.  Comparison of “brute force” Steppingstone estimate (GSS) and LoRaD for 16 models for the Protosiphon data.

Model Parameters GSS LoRaD S.D. δ 

JC 9 −2776.52 −2776.52 0.04 0.00
JC + I 10 −2744.59 −2744.58 0.01 −0.01
JC + G 10 −2747.44 −2747.44 0.02 0.00
JC + I+ G 11 −2743.56 −2743.57 0.02 0.01
GTR 17 −2714.20 −2714.30 0.02 0.10
GTR + I 18 −2681.00 −2681.22 0.04 0.22
GTR + G 18 −2682.73 −2682.95 0.04 0.22
GTR + I + G 19 −2680.29 −2680.56 0.06 0.27
*JC 11 −2681.79 −2681.79 0.01 0.00
*JC + I 14 −2668.38 −2668.40 0.02 0.02
*JC + G 14 −2668.99 −2668.99 0.02 0.00
*JC + I + G 17 −2667.19 −2667.19 0.08 0.00
*GTR 35 −2551.10 −2551.47 0.15 0.37
*GTR + I 38 −2535.57 −2536.14 0.24 0.57
*GTR + G 38 −2536.75 −2537.17 0.06 0.42
*GTR + I + G 41 −2534.66 −2535.31 0.20 0.65

Notes: Asterisks (*) denote models in which data was partitioned by codon position. The number of parameters listed does not include the 
tree topology, which was also estimated for each of these models. The δ column shows the difference between the GSS estimate of the log mar-
ginal likelihood and the mean of 30 LoRaD estimated log marginal likelihoods from independent MCMC analyses. Standard deviations of log 
marginal-likelihoods are based on the same 30 replicates.
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