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Abstract

The multispecies coalescent (MSC) model applies coalescent theory to gene evolution within

and among reproductively isolated populations (“species”) to estimate a species tree in the

face of gene tree conflict resulting from deep coalescence. Sequential Monte Carlo (SMC)

uses particle filtering to sample a posterior distribution, providing a fully-Bayesian and

easily parallelized alternative to traditional MSC tree inference approaches. The method we

propose samples first from the joint posterior distribution of gene and species trees, then

samples species trees conditional on gene trees sampled previously, employing SMC for both

rounds. Analyses of simulated and empirical datasets yield results comparable to state-

of-the-art Bayesian MCMC approaches. Sampling the multispecies coalescent using SMC

retains the advantages of fully Bayesian methods and is parallelizable in ways that Bayesian

MCMC methods are not but also adds unique challenges. We demonstrate the performance

of SMC compared to other commonly-used species tree methods using two empirical datasets

and 400 simulated datasets.

Keywords: particle filtering, Bayesian, phylogenetics, multispecies coalescent, Sequential

Monte Carlo, POSET-SMC
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Phylogenetic trees are essential tools in evolutionary biology, and many conclusions

rest on their accuracy. Gene histories can differ from species histories due to deep coa-

lescence, paralogy, horizontal gene transfer, and gene tree estimation error, which means

many genes are necessary to accurately estimate the history of a set of species (Maddison,

1997) and, ideally, modeling should account for all sources of conflict. The multispecies

coalescent model (MSC) (Rannala and Yang, 2003) accounts for deep coalescence (Pamilo

and Nei, 1988), a major source of gene tree conflict, applying coalescent theory (Kingman,

1982) to explain the evolution of genes within populations constrained by the history of the

reproductively-isolated units (species) to which they belong. In the most common version

of the MSC, “species” are defined as completely reproductively isolated populations, so the

“species tree” inferred is better termed a population structure tree (Sukumaran and Knowles,

2017); nevertheless, in this paper we will use the terms species and species tree to describe

the reproductively-isolated units inferred by the MSC.

Under the basic Wright-Fisher population model (Fisher, 1930; Wright, 1931), gen-

erations are non-overlapping, mating is random (including a random amount of selfing),

population size (N diploid individuals; 2N genes at any given locus) is constant through

time, and different loci are unlinked and thus evolve independently. When multiple copies

of a given gene are passed along to the next generation, the copying is termed a coalescence

event when viewed looking backwards in time.

Deep coalescence occurs when two gene lineages sampled from a single species fail to

coalesce before that species’ origin. Deep coalescence can result in the topology of the gene

tree differing from the topology of other gene trees (gene tree conflict) as well as the species

tree (Fig.1).

While fully Bayesian implementations of the MSC have considerable advantages (for
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Figure 1: Gene trees for locus 1 (solid black) and locus 2 (dashed lines) embedded within
a species tree (shaded). The species tree comprises 3 extant species (A, B, and C) and
two ancestral species (D and E). Species boundaries are indicated by horizontal gray bars.
The 2 lineages entering at the top of species D in locus 1 failed to coalesce until species
E, illustrating deep coalescence (star), which results in the gene tree topology for locus 1
(A,(B,C)) conflicting with the topology ((A,B),C) of both the species tree and the gene tree
for locus 2.

example, estimation of gene trees and effective population sizes), they are computationally

intensive and struggle to achieve convergence to the stationary posterior distribution on

large data sets. StarBEAST3 is a fully Bayesian program that uses Markov Chain Monte

Carlo (MCMC) to sample a multispecies coalescent posterior distribution (Heled and Drum-

mond, 2010; Ogilvie et al., 2022; Douglas et al., 2014). Widely used alternatives include

ASTRAL (Mirarab and Warnow, 2015), a summary method that takes estimated gene tree

topologies as input and estimates the species tree topology from the frequency of different

quartets of taxa. SVDQuartets, like ASTRAL, estimates only the species tree topology but

has the advantage of taking into account uncertainty in gene trees while still being very

computationally efficient (Chifman and Kubatko, 2014). Non-parametric bootstrapping of

the original data can be performed with either ASTRAL or SVDQuartets to assess clade

confidence. Recently, progress has been made on estimating speciation times in addition to
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topology using quartet methods (Peng, Swofford, and Kubatko, 2022), and local posteriors

based on the MSC model provide support values for each edge of an ASTRAL species tree

(Sayyari and Mirarab, 2016).

MCMC based on the Metropolis-Hastings algorithm is widely used in Bayesian phylo-

genetics and begins with a complete state (i.e., fully resolved phylogenetic tree with specified

edge lengths) and proceeds by proposing local perturbations of the current tree as it runs.

MCMC algorithms are challenging to parallelize because each iteration in the algorithm con-

ditions on the previous iteration. Typically, parallelized MCMC approaches to phylogenetics

involve splitting up likelihood calculations across processors, placing independent runs on

different processors, or placing differently heated chains on different processors in the case

of Metropolis-coupled MCMC. StarBEAST3 additionally places updates of gene trees from

different loci on different processors.

Sequential Monte Carlo (SMC) or, more specifically, POSET SMC (Bouchard-Côté,

2012, 2014), is a Bayesian alternative to MCMC that uses particle filtering to sample a

posterior distribution. In contrast to MCMC, SMC builds up a tree (whose state is stored

in a “particle”) sequentially, resampling particles at each step based on particle weights that

measure improvement in likelihood relative to the previous step (Fig. 2). SMC is naturally

parallelizable in several ways that are not possible using the Metropolis-Hastings algorithm.

The filtering steps involved in SMC approaches are analogous to natural selection,

and selective sweeps often occur, resulting in one particle’s “genome” replacing that of all (or

nearly all) other particles, resulting in a condition known as particle degeneracy. Such sweeps

lead to low effective sample size (ESS), analogous to the low ESS caused by autocorrelation

in MCMC analyses. Thus, while SMC and MCMC both have potential failings, they are

sufficiently different approaches that it is worthwhile exploring how well SMC can compete
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with MCMC-based MSC.

The SMC approach to the MSC model that we describe here differs from existing

non-MCMC methods (ASTRAL, SVDQuartets) in its ability to deliver a sample from the

posterior distribution of species trees (rather than a single point estimate) while sharing

with these methods the ability to scale to datasets with many loci. Like Metropolis-Hastings

MCMC methods, SMC is an approximation whose accuracy depends on the number of

particles and the nature of the proposal distributions used. While Bouchard-Côté (2012)

showed that, given unlimited computational resources, Metropolis-Hastings approaches can

achieve higher accuracy than SMC, SMC can deliver reasonable results on a more practical

time scale.

Materials and Methods

Our approach employs SMC hierarchically. At the first level, SMC is used to obtain a sample

from the joint posterior distribution of the species tree and gene trees from all loci. Species

tree marginal distributions resulting from joint estimation typically suffer from particle de-

generacy, and thus we employ a second level SMC to sample from the species tree posterior

distribution conditional on the gene trees sampled during the lower-level SMC.

We first describe sampling from the joint posterior distribution (first level SMC) in the

section entitled SMC for Joint Gene and Species Tree Sampling, then discuss the sampling

from the conditional posterior (second level SMC) in the section SMC for Species Trees

Given Gene Trees.
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SMC for Joint Gene and Species Tree Sampling

The joint posterior distribution for the simplest multispecies coalescent model (i.e., constant

population size and speciation rate) can be written:

p(G,S,θ, λ|D) ∝ p(D|G) p(G|S,θ) p(S|λ) p(θ|θ̄) p(λ), (1)

where:

D is a vector of aligned sequence data sets {Dl : l = 1, · · · , L} for L loci. Data set Dl

comprises sequences of length nl sites from each of T sampled genes from locus l;

θ is a vector of mutation-scaled population size parameters (Watterson, 1975) {θb : b =

1, · · · , 2M − 1}, where M is the number of extant species (M ≤ T ). Each edge b of

species tree S is associated with one element θb = 4Nbµb of this vector, where Nb and

µb are the effective (diploid) population size and mutation rate, respectively, for edge

b;

G is a vector of gene trees G = {Gl : l = 1, · · · , L}, where each component gene tree Gl

comprises T − 1 increments and joins: Gl = {(δt, ξt) : t = 1, · · · , T − 1};

S is the species tree, comprising M − 1 increments and joins: S = {(∆m,Ξm) : m =

1, · · · ,M − 1};

p(D|G) is the product of Felsenstein likelihoods (Felsenstein, 1981) computed using a sub-

stitution model (e.g., JC69; Jukes and Cantor, 1969) on each gene tree in G;

p(G|S,θ) is the coalescent likelihood (Rannala and Yang, 2003), which is the probability

density of the vector of gene trees G conditioned on species tree S and θ;
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p(S|λ) is the species tree prior, assumed in this paper to be a pure-birth Yule model (Yule,

1925), where λ is the birth rate;

p(θ|θ̄) is the prior for the value of θ associated with each individual species, conditional on

the assumed mean (θ̄); and

p(λ) is the prior on the speciation rate λ, i.e., the single parameter of the Yule model.

Figure 2: Species tree and growth of gene forest for one locus in one particle. Thick black
lines represent species tree barriers to gene flow. Notation simplified by omitting locus and
particle subscripts.

Proposing new states.— The term forest is used for partial states comprising sets of
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disjoint, ultrametric subtrees, with each subtree having its own root vertex. The disjoint

union of the leaves of the component subtrees yields the set of all sampled genes (for gene

forests) or extant species (if the species forest). The term tree is reserved for complete states

(i.e., a forest composed of just one subtree).

Each particle k (k = 1, · · · , K) begins with a vector of trivial gene forests Gk = {Gkl :

l = 1, · · · , L}. A trivial forest (state s0) comprises only leaf nodes and has height 0.0. A

value for θ̄k is drawn from its prior distribution. For each particle k, a complete species

forest Sk is drawn from its Yule prior. For each edge b in Sk, a mutation-scaled population

size parameter value θkb is drawn from an InverseGamma (2, θ̄k) prior (Fig. 2a).

The remainder of this section describes proposing state i given state i− 1 in the gene

forest for locus l in particle k; however, the subscript k is omitted to simplify notation. Each

step i results in state i having one more coalescence event than state i − 1. Proposing one

coalescence event for all L loci in a single particle thus involves L steps. Loci are visited in

randomized order in each round of L steps.

Let t = ti−1 be the time at the start of step i (i > 0). A time increment δli is drawn

from the coalescent prior distribution for locus l, which has rate rli,

rli =

M(t)∑
j=1

nlj(t)(nlj(t)− 1)

θj
(2)

δli ∼ Exp(rli), (3)

where nlj(t) is the number of uncoalesced gene tree lineages in existence at time t in species

j and at locus l, and M(t) is the number of species at time t.

Let τ1 < · · · < τM−1 be the heights of nodes representing speciation events in the
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species tree, and let t′i = min{τm : τm ≥ t,m = 1, · · · ,M − 1}. If t+ δli ≥ t′i (e.g., Fig. 2c,e),

then all lineages in gene forest l are advanced to time t′i and another increment δ′li is drawn

from an Exponential distribution whose rate now reflects the gene forest lineages merged as

a result of the speciation event at time t′i. If t + δli < t′i (e.g., Fig. 2b,d,f,g), all lineages in

gene forest l are advanced by an amount δli and the species in which the next coalescent

event occurs is determined using a draw from the multinomial probability distribution having

parameters

plij =
nlj(t)(nlj(t)− 1)

θjrli
, (4)

where j = 1, · · · ,M(t) and rli is the normalizing constant.

If species j is chosen, then two lineages ξli from species j in gene forest l are selected

randomly from a Discrete Uniform distribution and joined. The new gene forest ancestral

node is assigned to the same species as its two descendant lineages. The construction of

state i is now complete.

Each step of this joint estimation SMC algorithm results in a new state. The number

of steps S (and thus states) is thus the total number of coalescent events over all gene trees:

S =
L∑
l=1

(nl − 1). (5)

Particle weights.— Particle weights are calculated as the ratio of the product of the

gene forest likelihoods after a coalescent event to the product of the gene forest likelihoods

before a coalescent event (all prior terms in the numerator cancel with proposal terms in the

denominator, leaving only the likelihood ratio).

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.01.31.635964doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.31.635964


0251

0252

0253

0254

0255

0256

0257

0258

0259

0260

0261

0262

0263

0264

0265

0266

0267

0268

0269

0270

0271

0272

0273

0274

0275

The weight wi for any given particle at state si (i > 0) is

wi =
p(si|D, si−1)

q(si|si−1)
(6)

p(si|D, si−1) =
p(D|δ..i, ξ..i)

p(D|δ..(i−1), ξ..(i−1))
p(δi, ξi|S, si−1) (7)

q(si|si−1) = p(δi, ξi|S, si−1). (8)

Note that we have suppressed the particle index k from the notation for readability, and

use the shorthand notation x..i = x1 · · · xi for products of similar terms. The weight can be

viewed as an importance weight in the context of importance sampling, where the conditional

prior q(si|si−1) represents the importance density (Bouchard-Côté, 2014).

An exception is w1, which must take into account the prior probability of the species

tree, which was simulated from the Yule prior when particles were first initialized:

w1 =
p(s0, s1|D)

q(s0, s1)
=

p(s1|D) p(∆,Ξ|λ) p(θ|θ̄)
q(s1) q(∆,Ξ|λ) q(θ|θ̄)

. (9)

Because of the cancellation of prior terms with proposal terms, the weight wi simplifies

to

wi =
p(D|δ..i, ξ..i)

p(D|δ..(i−1), ξ..(i−1))
. (10)

UPGMA gene tree completion.— The particle weight used in practice differs from

(10) in one significant way. The weight defined in (10) sometimes leads to poor choices

in the particle filtering stage (see below) because it lacks foresight. That is, a coalescence

event proposed at step i may lead to a large improvement in likelihood at step i, but, in the
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final gene tree, results in a lower likelihood than if a different join had been made at step

i. Bouchard-Côté (2012) described an alternative proposal where trees in a partial state are

(temporarily) completed using a fast, deterministic approach such as neighbor-joining (NJ).

After the weight is calculated using this temporary complete state, the portion of the tree

completed using NJ is removed.

We implement this approach using a proposal where gene forests are completed using

a UPGMA algorithm (Sokal and Michener, 1958) with Jukes-Cantor distances (Jukes and

Cantor, 1969). We use UPGMA rather than NJ to maintain ultrametricity. The likelihoods

in both numerator and denominator of the particle weight are thus based on complete gene

trees in which state si is embedded. This allows SMC to “look ahead” and leads to better-

informed choices at each step. The weight including this modification is

wi =
p(D|δ..i, ξ..i, δi+, ξi+)

p(D|δ..(i−1), ξ..(i−1), δ(i−1)+, ξ(i−1)+)
, (11)

where δi+ and ξi+ are the increments and joins added to state i using the UPGMA algorithm

and δ(i−1)+ and ξ(i−1)+ are the increments and joins added to state i− 1 using the UPGMA

algorithm.

Filtering.— Filtering of particles takes place after a coalescent event has been pro-

posed in each particle for a given locus. Filtering is performed using multinomial sampling

with normalized weights as bin probabilities. If a particle is selected, its species tree S

(including θ) as well as its vector of gene forests G is copied to the new particle generation.

A selective sweep may result in one particle (with its associated species tree) replacing

all other particles. At this point, the part of the species tree beyond the deepest coalescent

event in any locus has not been influenced by the data, yet all future proposals will be

12

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.01.31.635964doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.31.635964


0301

0302

0303

0304

0305

0306

0307

0308

0309

0310

0311

0312

0313

0314

0315

0316

0317

0318

0319

0320

0321

0322

0323

0324

0325

constrained by this species tree. Thus, after each locus has undergone filtering, the species

tree in each particle is trimmed back to the deepest coalescent event across all loci in that

particle and rebuilt from that point on, with new values of θ drawn for each new species

population. This reintroduces variation in species trees across particles.

Why is filtering performed after gene forests in a single locus have been updated

rather than after all loci have been considered? If loci differ in sequence length, a locus with

a longer sequence will often achieve a larger difference in likelihood compared to a locus

with a shorter sequence length. Filtering loci independently ensures that loci with longer

sequences do not exert undo dominance in determining particle populations, especially at

early stages.

SMC for Species Trees Given Gene Trees

The first-level SMC described in the previous section often results in a marginal posterior

species tree sample that is dominated by very few distinct species trees. This is because

the Felsenstein likelihood is only indirectly influenced by the species tree hyperparameter

through its effect on gene tree edge lengths and joins. In contrast, the Felsenstein likelihood

directly affects the filtering of gene forests at each stage. We thus resample the marginal

species tree posterior in the second-level SMC, conditioning on the gene trees sampled in the

first-level SMC.

Using SMC to estimate the distribution of species trees conditional on complete gene

trees and θ̄ (mean mutation-scaled population size θ) is very similar to the method described

in detail by Bouchard-Côté (2012) and Bouchard-Côté (2014), with the primary difference

being that the likelihood function is the integrated coalescent likelihood (Jones, 2017) rather
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than the Felsenstein (1981) likelihood.

Figure 3: Growth of species forest (M = 3 species), constrained by a gene tree from one
locus in a single particle. a. trivial state s0. b. partial state s1. c. partial state s2. d.
complete state s3. Black bars represent reproductive isolation barriers separating distinct
species, numbers indicate distinct species, and the asterisk (*) denotes the coalescence event
that marks the maximum possible value of ∆1 (and also ∆2 given that Ξ2 joined species 2
and 3).

If complete gene trees are available, the conditional posterior distribution of species

trees does not require calculation of the Felsenstein likelihood,

p(S|G, θ̄, λ) = p(G,S|θ̄, λ)
p(G|θ̄, λ)

(12)

=

[∫
p(G|S,θ) p(θ|θ̄) dθ

]
p(S|λ)

p(G|θ̄, λ)
(13)

∝ p(G|S, θ̄) p(S|λ), (14)

where p(G|S, θ̄) is the integrated coalescent likelihood (Jones, 2017). Because this distribution

involves only the integrated coalescent likelihood and not the Felsenstein likelihood, sampling

is much less computationally demanding.
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Increments and joins.— The second-level SMC begins with K∗ particles, each having

L complete gene trees and a species forest in the trivial state (s0), consisting of only the M

leaf vertices, each having height 0.0 (Fig. 3a). The vector of gene trees is sampled randomly

from the first-level particle population and is shared by every particle in the second-level

analysis.

For example, a first-level analysis might use K = 1000 particles, of which 10% are

sampled for use in the second-level analysis. If K∗ = 200 particles are used for the second-

level analysis, then a total of (0.1K)K∗ = (0.1 ∗ 1000) ∗ 200 = 20000 species trees would

constitute the second-level posterior sample, with each of 0.1K = 0.1 ∗ 1000 = 100 gene tree

vectors retained from the first-level SMC forming the basis for an independent second-level

SMC involving K∗ particles.

The state of every particle is advanced from the trivial (species forest) state through

a series of partial states to a complete state via a series of proposals. A weight is computed

for a proposed new state and particles are filtered by drawing K∗ particles with replacement

from a multinomial distribution in which the bin probabilities are the normalized particle

weights.

There are j = M − i + 2 lineages before state i is proposed (i = 2, · · · ,M). The

transition from partial state si−1 to partial state si involves first choosing a pair Ξi of ex-

isting lineages to join, with probability
(
j
2

)−1
, and then a height increment ∆i from the

Exponential(jλ) prior distribution:

si = (Ξi,∆i) , i = 1, · · · ,M (15)

Ξ1 = ∅ (16)

∆M = ∞. (17)
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The first (i = 1) and last (i = M) steps represent exceptions: (1) two lineages are not

joined in creating partial state s1 because there is no reason to assume that the most recent

speciation event occurred exactly at time 0 and (2) the final increment is, necessarily, ∞

and thus is not a random variable; hence, Ξ1 is the empty set, and ∆M = ∞. In all partial

states si (i < M), we implicitly assume an ephemeral ancestral species, which extends from

τi =
∑

j≤i∆j to ∞. This is necessary because species forests are conditioned on complete

gene trees (not partial-state gene forests).

To illustrate why Ξi is chosen before ∆i in each step, consider state s1 in Figure 3b.

The coalescent likelihood must account for 1 coalescent event in species 1 (top) and 0 coa-

lescent events in both species 2 and 3 (middle and bottom) during the time interval (0,∆1).

It must also account for the remaining 5 coalescent events in the history of the 6 lineages

that exist at time ∆1. These 6 lineages and their ancestors are all members of the ephemeral

ancestral species. Joining two lineages after choosing the increment ∆1 would therefore have

no effect on the coalescent likelihood because such a join would be associated with a time

interval of zero length between the join and the start of the ephemeral species. The conse-

quences of such a join would not be realized until the next step, at which point there is no

longer any opportunity to make the particle pay for a poor join decision. Thus, joins always

follow increments when constructing species forests in the second-level SMC.

In general, the number of loci is greater than 1, so the species forest constructed

within each particle is conditioned on gene trees from more than one locus. The coalescent

events within gene trees place constraints on the maximum value that any given species tree

increment can attain. For example, the increment ∆1 in Figure 3b must be less than or equal

to the time of the coalescence event indicated by the asterisk (*). This is the first coalescence

event (over all loci) where lineages from two distinct species join. Extending ∆i further back
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in time than this gene tree node would imply gene flow across species boundaries, which

is not allowed under the multispecies coalescent model. Such constraints lead to sampling

efficiencies even if the prior on species tree increments is vague.

Particle weights.— As for the first-level SMC, the weight wk for particle k (k =

1, · · · , K) at state si can be viewed as an importance weight in the context of importance

sampling:

wk =
p(si|si−1,G, θ̄, λ)
q(si|si−1,G, λ)

=
p(si|G, θ̄, λ)

p(si−1|G, θ̄, λ) q(si|si−1,G, λ)
, (18)

where p(s|G, θ̄, λ) is the posterior probability density of state s and q(si|si−1,G, λ) is the

importance density, which, in this case, equals the proposal density for ∆i and Ξi given the

previous state si−1:

p(si|G, θ̄, λ) =
p(G|si, θ̄) p(si|λ)

p(G|θ̄, λ)
(19)

p(si−1|G, θ̄, λ) =
p(G|si−1, θ̄) p(si−1|λ)

p(G|θ̄, λ)
(20)

q(si|si−1,G, λ) = p(∆i|si−1, λ,G) p(Ξi|si−1). (21)

The multispecies coalescent likelihood can be computed piecewise by species tree

edge. Figure 4 illustrates the calculation of the coalescent likelihood for locus l on edge b of

the species tree. If edge b is one of the edges added to construct state i, then ∆i =
∑klb

j=0 clbj.

Jones (2017) observed that the coalescent likelihood takes the form of an InverseGamma(qb−
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Figure 4: Computation of the multispecies coalescent likelihood for edge b of the species tree
at locus l. The klb coalescent events partition the edge length into intervals of length clb0,
clb1, and clb2. nlb and nlb − klb are the number of lineages entering and leaving the edge,
respectively.

1, γb) distribution for each edge b of the species tree:

p(G|θ) =
∏
b

rb
θqbb

e−γb/θb , (22)
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where

rb =
L∏
l=1

(
4

pl

)klb

(23)

qb =
L∑
l=1

klb (24)

γb =
L∑
l=1

klb∑
j=0

4
(
nlb−j

2

)
pl

clbj, (25)

b indexes edges (i.e., species) in the species tree, l indexes loci, i indexes coalescent events

within species b in gene tree Gl, pl is the ploidy level of locus l (e.g., pl = 1 for a plastid

or mitochondrial locus and pl = 2 for nuclear loci in diploid organisms), clbj is the jth time

interval in gene tree Gl for edge b, and nlb is the number of lineages in gene tree Gl at

the start of edge b. Note that our formulas for rb and γb contain the factor 4 because the

Watterson (1975) definition of θb that we use (θb = 4Nbµb) differs from Jones (2017), who

used θb = Nbµb, where Nb is the effective population size and µb the mutation rate specific

to edge b.

Assuming an InverseGamma(α, β) prior distribution for θb allows θb to be analytically

integrated out of the coalescent likelihood (Jones, 2017):

p(G|∆..i,Ξ..i, θ̄) =
∏
b

rb
βα

(β + γb)
α+qb

Γ(α + qb)

Γ(α)
. (26)

We assume α = 2, β = θ̄, where the parameter θ̄ specifies the mean value of θ among species.

For the Yule pure-birth tree model, the proposal density for ∆i is

p(∆i|si−1, λ,G) =
λ(nt − 1i>1)e

−λnt∆i

1− e−λ(nt−1i>1)tmax
, (27)
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where nt is the number of species tree lineages at time t, t =
∑

j<i∆j denotes the height of

the species forest at state si−1, tmax is the upper bound for ∆i determined by G, and 1i>1 is

an indicator variable that is 1 if i > 1 and 0 if i = 1.

The join proposal probability is

p(Ξi|si−1) =
1(

nt−1i>1

2

) . (28)

Cancellation of prior terms in the numerator with proposal terms in the denominator results

in the following particle weight specification:

wk =
p(si|si−1,G, θ̄, λ)
q(si|si−1,G, λ)

(29)

=
p(si, si−1|G, θ̄, λ)

p(si−1|G, θ̄, λ) q(si|si−1,G, λ)
(30)

=

p(G|si,θ̄) p(si|λ)
����p(G|θ̄,λ)

p(G|si−1,θ̄) p(si−1|λ) q(si|si−1,G,λ)

����p(G|θ̄,λ)

(31)

=
p(G|si, θ̄)�����p(si−1|λ) p(si|si−1, λ)

p(G|si−1, θ̄)�����p(si−1|λ) q(si|si−1,G, λ)
(32)

=
p(G|si, θ̄)�������

p(si|si−1, λ)

p(G|si−1, θ̄) (((((p(si|si−1,λ)

1−e−λ(nt−1i>1)tmax

(33)

=
p(G|si, θ̄)
p(G|si−1, θ̄)

(
1− e−λ(nt−1i>1)tmax

)
. (34)

The first term is the ratio of the integrated coalescent likelihood for state si to the

integrated coalescent likelihood for state si−1. The second term is the normalizing constant

of the truncated Exponential proposal distribution for increment ∆i.

Particle filtering.— After parameters ∆i and Ξi are proposed and weights are deter-

mined for each particle, the weights are normalized and multinomial sampling is used to
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draw K∗ new particles using the normalized weight w̃k = wk/
∑

k wk as the probability for

bin k. After the filtering step, the particle population represents a sample from the posterior

distribution of state si = {∆..i,Ξ..i} conditional on θ̄ and gene trees G.

Simulations

We performed simulations to compare the performance of the SMC approach to the Bayesian

MCMC approach of StarBEAST3 with respect to accuracy of the species tree topology. At

every point in a 20 by 20 grid, data were simulated for 10 loci, 5 species, and 2 sampled

individuals per species. The 20 grid rows corresponded to evenly-spaced values of T , the

species tree height, from 0.0 to 0.5. The 20 grid columns corresponded to evenly-spaced

values of θ/2, from 0.0 to 0.3. θ was fixed across all species within a species tree. Smaller

values of T and larger values of θ/2 yield greater expected deep coalescences, and thus those

areas of the grid present more challenges to species tree methods.

Species trees were simulated using a pure-birth Yule (1925) model with speciation

rate λ. Gene trees were simulated within the species tree from the prior. Sequences between

200 and 1000 nucleotides were simulated under the Jukes-Cantor substitution model with

equal rates among sites and loci.

SMC analyses used K = 10000 particles for the first level and K∗ = 500 particles

for the second level. A randomly-chosen 2.5% of particles from the first-level analysis were

used for the second-level analysis. A randomly-chosen 0.8% of second-level particles were

saved, yielding a sample of size 1000 species trees. StarBEAST3 analyses used 15 million

iterations, saving every 15000 for a total sample size of 1000 species trees. Burn-in was set

to 1.5 million iterations.
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Analyses using both SMC and StarBEAST3 assumed a fixed speciation rate deter-

mined from the tree length estimated by the QAGE method (Peng, Swofford, and Kubatko,

2022). Note that the simulations assumed θ was constant throughout the species tree,

whereas both SMC and StarBEAST3 allowed θ to vary among species; however, both as-

sumed constant θ within a species. The mean θ used by both SMC and StarBEAST3 analyses

was also estimated by the QAGE method. The definition of θ differed between SMC and

StarBEAST3. StarBEAST3 defines θ = Neµ whereas SMC assumes the Watterson (1975)

mutation-scaled population size definition, θ = 4Neµ. To make analyses comparable, we

thus set StarBEAST3 mean θ to 1/4 that of SMC.

The Robinson-Foulds (RF; Robinson and Foulds, 1981) distances between each sam-

pled species tree and the true species tree used for simulation were averaged to provide a

measure of species tree topology accuracy.

Empirical Data

We also explored the performance of our method on two datasets, one containing gopher

species and one containing snake species. The gopher dataset consists of a subset of data

from Belfiore et al. (2008). The data contain 6 loci sampled from 27 individuals representing

10 species of pocket gophers. The 9 ingroup species belong to the genus Thomomys, and the

outgroup belongs to the genus Orthogeomys. The snake dataset consists of a subset of data

from Chifman and Kubatko (2014). The data contain 15 loci sampled from 52 individuals

representing 7 species of snakes. The original data set contained 19 loci; we removed 4

loci in which one or more taxa had completely missing data. The 6 ingroup species belong

to the genus Sistrurus, pygmy rattlesnakes, and the outgroup species belongs to the genus

Agkistrodon. We chose these datasets because they are well-studied, making them good
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measures of program performance. They are also small enough that it is feasible for multiple

programs, even computationally intensive programs, to run them in a reasonable amount of

time.

Gopher dataset.— We estimated a species tree using StarBEAST3 (Douglas et al.,

2014) and SMC. In both programs, we used a Jukes Cantor (Jukes and Cantor, 1969) sub-

stitution model and a fixed speciation rate determined from the tree length estimated by

QAGE (Peng, Swofford, and Kubatko, 2022). Mean θ was also estimated by the QAGE

method. We ran StarBEAST3 for 20 million generations, with 2 million generations of burn-

in, saving trees every 10000 generations for a total of 2000 species trees sampled. We allowed

each locus to have a different relative rate of substitution with default prior LogNormal(1.0,

0.6). SMC analyses used K = 10000 particles for the first level and K∗ = 1000 particles for

the second level. A randomly-chosen 2.5% of particles from the first-level analysis were used

for the second-level analysis. A randomly-chosen 0.8% of second-level particles were saved,

yielding a sample of size 2000 species trees. We fixed relative rates for each locus according

to estimates under a site-specific model implemented in PAUP*. We conducted 10 indepen-

dent runs in both StarBEAST3 and SMC and combined the resulting species trees, yielding

a sample 20,000 species trees from each program.

We also estimated species trees using SVDQuartets and ASTRAL IV (as implemented

in ASTER (Zhang & Mirarab, 2022; Tabatabaee et al., 2023)). The SVDQuartets analysis

comprised 1000 bootstrap replicates, and the tree was rooted at outgroup O. heterodus. For

the ASTRAL analysis, we used maximum likelihood gene trees estimated from IQTREE

(Nguyen et al., 2015), using a Jukes Cantor model for each locus. We rooted the tree at

outgroup O. heterodus.

Snake dataset.—We estimated a species tree using StarBEAST3 (Douglas et al., 2014)
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and SMC. In both programs, we used a Jukes Cantor (Jukes and Cantor, 1969) substitution

model and a fixed speciation rate determined from the tree length estimated by QAGE

(Peng, Swofford, and Kubatko, 2022). Mean θ was also estimated by the QAGE method.

We ran StarBEAST3 for 100 million generations, with 10 million generations of burn-in,

saving trees every 50000 generations for a total of 2000 species trees sampled. We allowed

each locus to have a different relative rate of substitution with default prior LogNormal(1.0,

0.6). SMC analyses used K = 15000 particles for the first level and K∗ = 1000 particles

for the second level. A randomly-chosen 1.67% of particles from the first-level analysis were

used for the second-level analysis. A randomly-chosen 0.8% of second-level particles were

saved, yielding a sample of size 2000 species trees. We fixed relative rates for each locus

according to estimates under a site-specific model implemented in PAUP*. We conducted

10 independent runs in both StarBEAST3 and SMC and combined the resulting species

trees, yielding a sample of 20,000 species trees from each program.

We also estimated species trees using SVDQuartets and ASTRAL IV (as implemented

in ASTER (Zhang & Mirarab, 2022; Tabatabaee et al., 2023)). For the SVDQuartets anal-

ysis, we used 1000 bootstrap replicates and rooted the tree at outgroup Agkistrodon spp.

For the ASTRAL analysis, we used maximum likelihood gene trees estimated from IQTREE

(Nguyen et al., 2015), using a Jukes Cantor model for each locus. We rooted the tree at

outgroup Agkistrodon spp.
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Results

Simulations

Without accounting for parallelization, SMC took 1126 seconds on average, and StarBEAST3

took 1359 seconds on average. We chose settings that gave each program roughly the same

computational budget to fairly assess accuracy.

As expected, smaller values of T combined with larger values of θ/2 produced difficult

conditions, with more than 60% of the maximum possible number of deep coalescences being

deep (Fig. 5a, lower right). Larger values of T combined with larger θ/2 yielded easier

conditions (Fig. 5a, upper left).

SMC and StarBEAST3 performed similarly (average difference in RF distance to true

species tree between -0.5 and 0.5) for the majority (270 out of 400) of combinations of T

and θ/2 (Fig. 5b). There is no area of the grid where one method consistently outperforms

the other. That said, StarBEAST3 performed slightly better than SMC on average, with

an average RF distance of 0.399, compared to 0.638 for SMC. SVDQuartets produced an

average RF distance of 1.005, and ASTRAL produced an average RF distance of 0.775.

Empirical Data

Gopher dataset.— All four methods found support for the clade containing T. townsendii,

T. bottae, and T. umbrinus (Fig. 6). SMC, StarBEAST3, and ASTRAL recovered T. bottae

and T. townsendii as sister, while SVDQuartets recovered T. townsendii and T. umbrinus as

sister. All methods also found support for the clade containing T. idahoensis, T. monticola,

T. mazama, and T. talpoides. ASTRAL and SVDQuartets found support for T. idahoensis
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Figure 5: Plots show simulation results for 400 combinations of expected species tree height
T and θ/2. a) Ratio of true number of deep coalescences to the maximum possible number
of deep coalescences. (Higher values represent more difficult parameter combinations.) b)
Mean SMC Robinson-Foulds (RF) distance to the true tree minus mean StarBEAST3 RF
distance to the true tree. Positive values (yellow) indicate StarBEAST3 performed better
for the simulation; negative values (purple) indicate SMC performed better. Points indicate
(θ/2, T ) combinations. Plot shows surface smoothed between sampled points.

and T. talpoides as sister within this clade, with T. mazama as the most distantly related

species within this clade. SMC and StarBEAST3 found <50% support for any sister-group

relationship in this clade. Neither StarBEAST3 nor SMC found support for a sister-group

relationship between the putative outgroup O. heterodus and the ingroup species, though

trees are displayed rooted at this taxon. (Neither SVDQuartets nor ASTRAL infer the root.)

Without accounting for parallelization, SMC took 2298 seconds on average, and StarBEAST3

took 2629 seconds on average.

Maximum clade credibility (MCC) trees for SMC (Fig. 7a) and StarBEAST3 (Fig. 7b)

show comparable branch lengths between programs. SMC found slightly longer branch
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lengths for the clade containing T. townsendii, T. bottae, and T. umbrinus, but branch

lengths on the MCC trees for this clade are no more than 0.0026 units different. Posterior

probabilities for the MCC trees (Fig. 7c,d) are also comparable. Although both programs

found strongest support for different sister relationships within the T. idahoensis, T. monti-

cola, T. mazama, and T. talpoides clade, posterior probabilities were no greater than 0.5 for

any relationship in this clade. The MCC trees are not rooted at the putative outgroup O.

heterodus. SMC found lower support than StarBEAST3 for this taxon in the clade contain-

ing T. townsendii, T. bottae, and T. umbrinus, placing more support for this taxon as sister

to the putative ingroup.

Snake dataset.— All methods recovered the same topology, with high support values

for the two major clades: S. edwardsii, S. tergeminus, and S. catenatus ; and S. miliarius, S.

barbouri, and S. streckeri. Without accounting for parallelization, SMC took 27411 seconds

on average, and StarBEAST3 took 40603 seconds on average.

Maximum clade credibility (MCC) trees (Fig. 9a,b) for SMC and StarBEAST3 show

comparable branch lengths between programs. SMC found slightly longer branch lengths

for the clade containing S. barbouri, S. miliarius, and S. streckeri, but branch lengths on the

MCC trees for this clade are no more than 0.0039 units different.

Posterior probabilities for the MCC trees (Fig. 9c,d) are also comparable. SMC found

slightly lower support for Agkistrodon spp. as sister to the ingroup taxa and slightly lower

support for the group S. edwardsii and S. tergeminus, but the topologies of both programs

are identical.
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(c) SVDQuartets
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(d) ASTRAL

Figure 6: Gopher dataset. a) 50% majority rule consensus tree estimated by SMC. b) 50%
majority rule consensus tree estimated by StarBEAST3. c) Bootstrapped consensus tree
estimated by SVDQuartets. d) Tree estimated by ASTRAL with local posterior probabilities.
All trees rooted at outgroup O. heterodus.
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(c) SMC MCC tree with posterior
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(d) StarBEAST3 MCC tree with
posterior probabilities

Figure 7: Gopher dataset. a) Maximum clade credibility tree estimated by SMC with node
heights. b) Maximum clade credibility tree estimated by StarBEAST3 with node heights. c)
Maximum clade credibility tree estimated by SMC with posterior probabilities. d) Maximum
clade credibility tree estimated by StarBEAST3 with posterior probabilities. Figures created
with TreeAnnotator (Drummond et al., 2007).
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(d) ASTRAL

Figure 8: Snake dataset. a) 50% majority rule consensus tree estimated by SMC. b) 50%
majority rule consensus tree estimated by StarBEAST3. c) Bootstrapped consensus tree
estimated by SVDQuartets. d) Tree estimated by ASTRAL with local posterior probabilities.
SVDQuartets and ASTRAL trees rooted at outgroup Agkistrodon spp.
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Figure 9: Snake dataset. a) Maximum clade credibility tree estimated by SMC with node
heights. b) Maximum clade credibility tree estimated by StarBEAST3 with node heights. c)
Maximum clade credibility tree estimated by SMC with posterior probabilities. d) Maximum
clade credibility tree estimated by StarBEAST3 with posterior probabilities. Figures created
with TreeAnnotator (Drummond et al., 2007).
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Discussion

It is becoming increasingly important for phylogenetic methods to be able to accommodate

datasets with hundreds of nuclear loci that conflict with one another due to incomplete

lineage sorting or other factors. We have described a fully-Bayesian MSC method that is

parallelizable in ways that are not possible for existing multispecies coalescent MCMC al-

gorithms. Bayesian methods sample joint posterior distributions of continuous parameters

(e.g., edge lengths, population sizes) and marginalize over discrete tree topologies, which

makes them useful even as faster, non-Bayesian alternatives continue to be developed (Chif-

man and Kubatko, 2014; Mirarab and Warnow, 2015). Bayesian methods are also flexible

with respect to model and can be used, for example, to estimate divergence times (Ogilvie

et al., 2022), though our SMC implementation does not currently do this.

Speed and accuracy are important metrics for determining the utility of a program,

and we have found that, while SMC cannot compete with ASTRAL and SVDQuartets in

terms of speed, its accuracy and computational efficiency are comparable to that of Star-

BEAST3, currently recognized as the state of the art, even when parallelization is not taken

into account. It is difficult to compare speed with parallelization between programs. While

StarBEAST3 can be parallelized by placing loci on different processors, there is no speed

advantage to using more processors than the number of loci. In contrast, SMC can paral-

lelize across loci and particles, enabling it to take advantage of any number of processors.

It is difficult to compare the computational efficiency of programs that are so divergent in

their approach. Probably the best unit to use is the number of partial likelihood array cal-

culations; however, we chose the simpler route of choosing settings for both programs that

yielded runs of approximately the same total user seconds, giving StarBEAST3 slightly more

time than SMC.
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Particle degeneracy is a common problem with SMC-based algorithms (Truszkowski

et al., 2023), and our SMC approach is no exception. If all samples from a locus have

the same topology at the end of the first level SMC, the second level may produce inflated

support values for clades in the species tree. We found that doing multiple independent SMC

replicates and combining samples produced results comparable to StarBEAST3 for both

empirical datasets. While this does increase the computational budget, multiple replicates

can be run in parallel, and multiple independent StarBEAST3 runs are also recommended

for assessing convergence. We found that particle degeneracy was less of an issue in our

simulations, likely because the datasets were smaller and simulated from the exact model

used for analysis.

Assessing convergence and the number of particles required in SMC algorithms is

difficult. Bouchard-Côté (2012) suggested using effective sample size (ESS) to determine

the number of particles needed; if ESS is low, it may mean more particles are needed.

However, we have found that there are nearly always SMC steps for which the ESS is very

low, regardless of how many particles are used. If the likelihood of one particular join in a

gene tree is much greater than that of any other possible join, then any particle that gets

this join correct will enjoy a selective sweep. This is as it should be; the low ESS in this

case is a consequence of the high marginal gene tree clade posterior. Correctly diagnosing

the causes of low ESS remains an area for future work.

We have found that increasing the number of loci in a dataset increases the number of

SMC steps but does not necessarily increase the number of particles needed in the first level

because only one locus is addressed during each step. Increasing the number of individuals

sampled increases the number of particles required in the first-level SMC. This is because

more individuals means more join possibilities, especially at early steps or when deep coa-
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lescence is common. For example, sampling 100 individuals for a particular species requires

14828 particles to have a 95% chance of getting the first join correct (assuming that the first

coalescence event is shallow). Finally, increasing the number of species also increases the

number of particles needed because of the smaller chance that any one particle proposes a

correct species tree join. This is not surprising because MCMC approaches also require more

effort for larger sample sizes (loci, species, individuals per species).

Sampling the multispecies coalescent using SMC thus retains the advantages of fully

Bayesian methods and is parallelizable in ways that Bayesian MCMC methods are not

but also adds unique challenges. We demonstrated the performance of SMC compared to

other commonly-used species tree methods using two empirical datasets and 400 simulated

datasets.
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